PATHOGENESIS OF PNEUMOCONIOSES

Carlos Robalo Cordeiro carlos.crobalo@gmail.com

COIMBRA UNIVERSITY

UNIVERSITY HOSPITAL

Development of disease

Host factors

individual susceptibility

Environmental factors

nature and duration of exposure, co-exposures

Particles

agent
dimension
surface morphology
physical and chemical characteristics

- A chronic lung disease due to inhalation of crystalline silica (usualy quartz)
- Characterized by progressive parenchymal nodules and pulmonary fibrosis
- Silica or silicon dioxides is the most abundant mineral in the earth's crust
- Occupations: Mining, quarrying, stonework, foundries, abrasive, ceramic industries

Cumulative dose

respirable dust/particle concentration crystalline silica content

duration of exposure

Silica - Dose

Quantity of material

- Concentration in the air
 by mass: mg/m³
- Duration of exposure hours, days, years
- Cumulative exposure (concentration x duration)

Lymph node silicosis precedes lung silicosis?

 Lymph node-only associated with lower exposures than lung silicosis

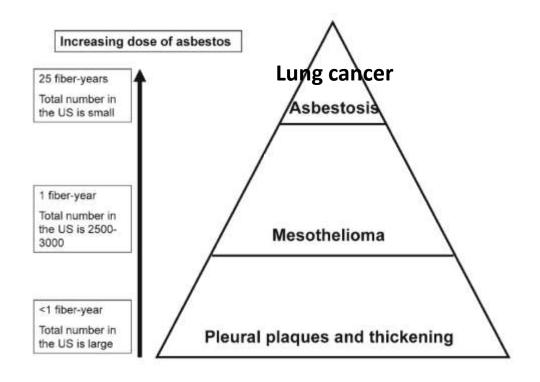
Cox-Ganser JM et al. J Occup Environ Med 2009

 As cumulative exposure to silica increased, lung silicosis increased at the expense of lymph node-only silicosis and non silicosis

Taeger D et al. Arch Environ Occup Health 2011

- Fibrogenic particles
 - Trydimite > cristobalite > quartz (recently cut)

- Less (non) fibrogenic particles
 - Amorphous silica


 In 1997 the International Agency for Research on Cancer (IARC) classified crystalline silica inhaled in the form of quartz or cristobalite from occupational sources as a <u>human (Group I)</u> <u>Carcinogen</u>... (reinforced in 2009)

Asbestos

- <u>Amphibole hypothesis</u>: Amphiboles, especially crocidolite, are more fibrogenic and carcinogenic than chrysolite (?)
- <u>Dose response</u>: years of exposure, intensity, dust control measures (masks)
- Latency period: 10-40 years typically
 - < 5 years after initial exposure unlikely due to asbestos</p>
- Genetic susceptibility (not fully understood)
 - Anti-oxidant defenses
 - Inflammatory/immune response
 - Gene polymorphisms (GSTM1, SOD2, α 1AT, XRCC1/3)
 - p53

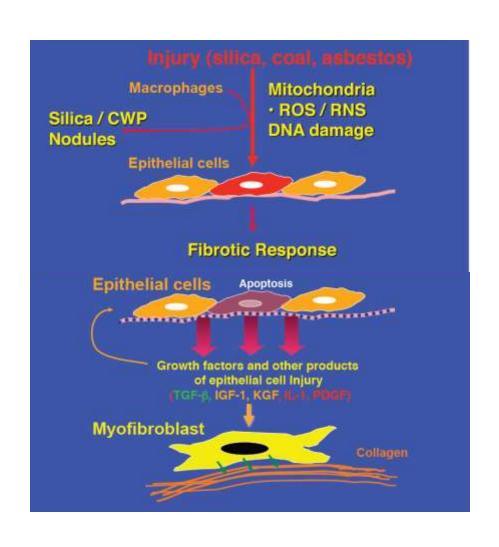
Asbestos

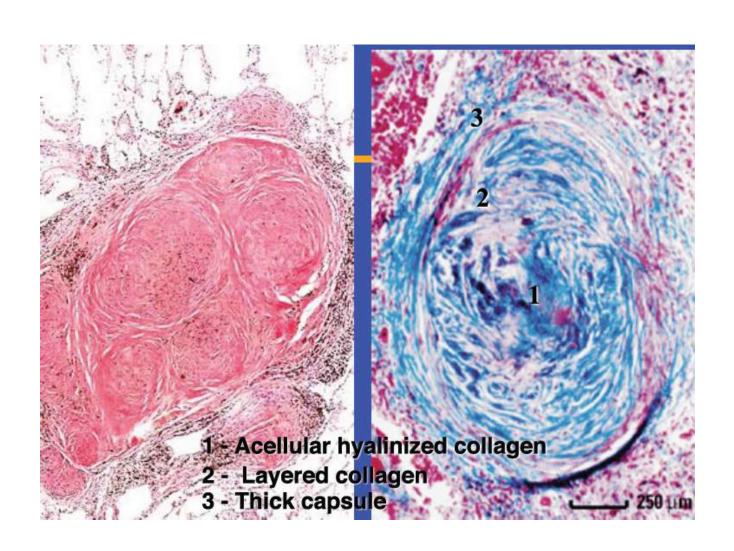
Dependance on the magnitude of fiber exposure

A Clinical Guide to Occupational and Environmental Lung Diseases Yuh-Chin Huang, Andrew Ghio, Lisa Maier Eds. Springer 2012

Mesothelioma Biomarkers

- Mesothelin-related peptides (SMRP)
 - Approved by FDA in 2007 for monitoring the course of mesothelioma with epithelioid features
 - Not approved for diagnosis
 - Meta-analysis: at a threshold level with 95% specificity, serum mesothelin had a sensitivity of 32%


Hollevoet K et al. J Clin Oncol 2012


Osteopontin

- Plasma osteopontine has better performance characteristics than serum ostepontin
 - → Combining serum mesothelin and plasma osteopontin did not improve diagnostic performance

Creaney J et al. Lung Cancer 2011

Pathogenesis

Rare Interstitial Lung Diseases of Environmental origin

C Robalo Cordeiro, TM Alfaro, S Freitas, J Cemlyn-Jones, AJ Ferreira

Table 1. Pathological abnormalities and related exposures	
Pathological patterns	Related exposures
Usual interstitial pneumonia	Asbestos and other fibrous silicates, wood and metal dusts, mixed dust, mica, uranium mining, plutonium, kaolin, rare earths, cobalt and aluminium
Nonspecific interstitial pneumonia	Organic antigens and reactive chemicals
Desquamative interstitial pneumonia	Textile work, cobalt, aluminium, plutonium, asbestos and talc
Respiratory bronchiolitis-interstitial lung disease	Second-hand smoke
Organising pneumonia	Spray painting textiles (acramin) and nitrogen oxide species
Diffuse alveolar damage	Irritant inhalational injury: nitric oxide, sulfur oxygen species, cadmium, beryllium, chlorine, acid mists and waterproofing materials
Giant cell interstitial pneumonia	Cobalt
Pulmonary alveolar proteinosis	High-level exposure to silica, titanium or aluminium dust
Constrictive bronchiolitis	Diacetyl, fibreglass coating materials, nitric oxide, sulfur oxygen species and chlorine gas
Granulomatous inflammation (sarcoid or sarcoid-like)	Beryllium, organic antigens, zirconium, aluminium, titanium and mixed dust
Adapted from [1] and [2].	

Silicosis

Chi Chiu Leung, Ignatius Tak Sun Yu, Weihong Chen

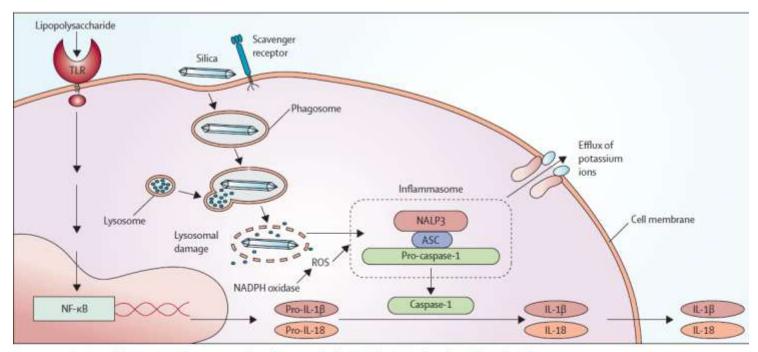
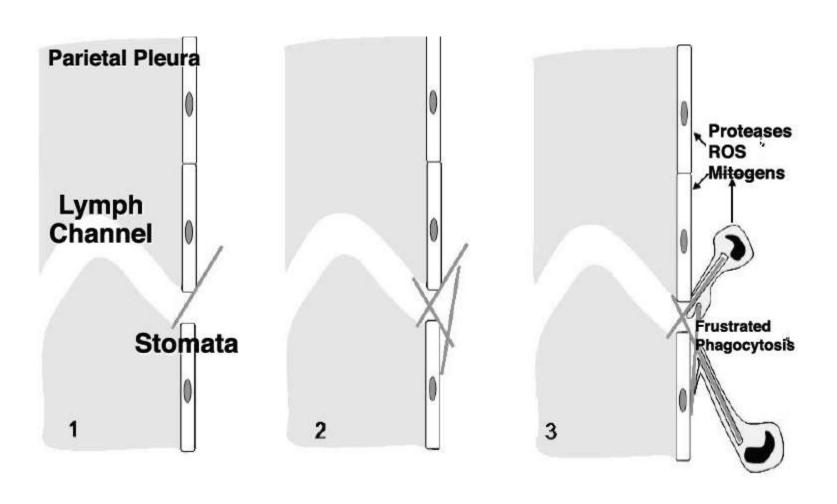
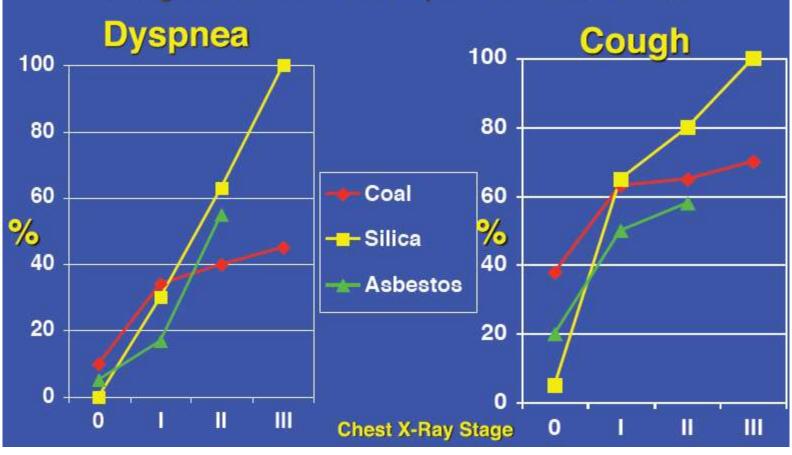
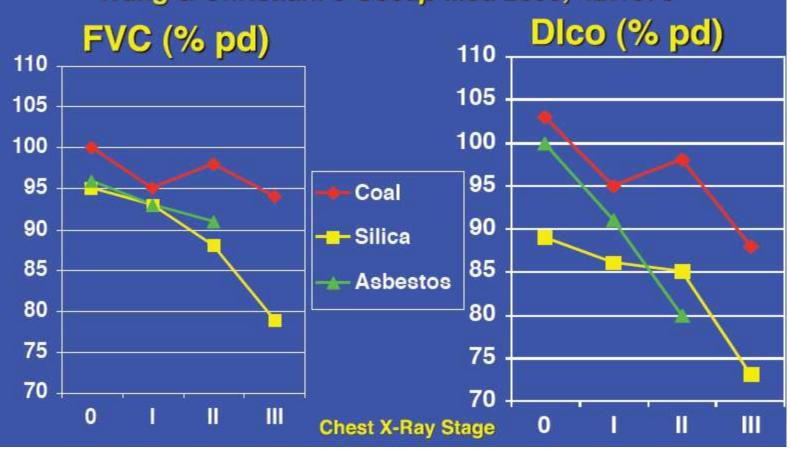



Figure 2: Activation of the NALP3 inflammasome by a silica crystal after initial priming by a lipopolysaccharide

Phagocytosis of crystalline silica leads to active swelling of phagosomes, followed by phagosomal destabilisation, releasing their contents into the cytosolic compartment. Activation of the nucleotide-binding domain, leucine-rich repeat protein NALP3 leads to its association with the intracellular adapter protein ASC, which combines with and activates pro-caspase-1. The resulting active enzyme complex (NALP3 inflammasome) activates the potent proinflammatory molecules suc as IL-18. Activation of the NALP3 inflammasome by silica also necessitates generation of ROS by an NADPH oxidase after particle phagocytosis and an efflur of intracellular potassium ions, suggesting a possible interaction of the silica with a membrane-associated protein. TLRs or IL-1 receptors do not seem to be essentified activation of the inflammasome. However, secretion of IL-1β by mouse or human macrophages in response to silica or asbestos in vitro seems to be a two-step process because priming by a lipopolysaccharide is necessary. The scavenger receptors seem to have a role in the recognition and uptake of silica. TLR=toll-like receptor ROS=reactive oxygen species. ASC=apoptosis-associated speck-like protein containing a caspase recruitment domain. NF-κB=nuclear factor-κB. IL=interleukin.


Long fiber retention in the parietal pleura

Donaldson K et al. Particle and Fiber Toxicology 2010


Silica (n = 220), Coal (n = 511) and Asbestos (n = 277) Workers: CXR

Wang & Christiani *J Occup Med* 2000; 42:1076

Silica, Coal and Asbestos Workers: PFT v. CXR

Wang & Christiani J Occup Med 2000; 42:1076

Timely intervention strategies!

A through understanding of these mechanisms may enable the identification of prediction markers and early detection of Pneumoconiosis

- Biomarkers of exposure, effect and susceptibility Silicosis and CWP: Clara cell protein-16, TNF- α IL-8, ROS, PDGF, ...
- Exhaled Breath Condensate
 8-isoprostanes, H2O2, PGE2, Glutathione, LTs, Ils, Nitrates, pH,...
- Genetic variability and genetic/environmental interaction Silicosis and CWP: TNF- α polymorphisms

