Bronchoscopic techniques in interstitial lung diseases. Obtaining and preserving specimens for investigation.

Martina Vašáková, Martina Šterclová, Šárka Lefnerová, Luděk Stehlík, Radoslav Matěj

Department od Respiratory Medicine 1st Medical School, Charles University Thomayer Hospital, Prague The presentation is supported by grant IGA MZČR 1207 and 1302

Bronchoscopy in ILDs

- Bronchoscopy is a useful diagnostic tool in some ILDs, particularly sarcoidosis, hypersensitivity pneumonitis and organizing pneumonia
 - Bradley B, Branley HM, Egan JJ, et al. Thorax 2008

• Bronchoscopic methods in ILDs:

- Bronchoalveolar lavage
- Endobronchial biopsy
- Transbronchial biopsy
- Transbronchial needle aspiration of mediastinal lymph nodes under EBUS control

Sedation and local anesthesia

Sedation

- Intravenous midazolam is the preferred drug for sedation; it has a rapid onset of action and is titrable
- Dosage: no more than 5 mg midazolam (strength 1 mg/mL) should be drawn into a syringe prior to bronchoscopy for patients under the age of 70 (2 mg midazolam for patients over 70)
- Combination opioid and midazolam sedation should be considered in patients to improve bronchoscopic tolerance
- When opioids are used, short-acting agents (such as fentanyl or alfentanil) should be used to minimize post-procedural sedation.

⁻ Du Rand IA, et al. Thorax 2013;68:i1–i44. doi:10.1136/thoraxjnl-2013-203618

Sedation and local anesthesia

Local anesthesia

- Nasal topical anaesthesia
 - lidocaine gel
- Laryngeal and tracheobronchial topical anaesthesia- 1% lidocaine solution:
 - Application of lidocain spray to anesthesize tongue, and larynx followed by aplication of lidocain (tetracain), by special bore laryngeal needle inserted through vocal chords
 - "Spray-as-you-go" delivery, in which lidocaine is applied via the bronchoscope working channel. Repeated application allows lidocaine delivery to the entire airway
 - Direct injection into the upper trachea using a needle passed through the cricothyroid membrane, allowing lidocaine delivery to the larynx and trachea prior to bronchoscope insertion- not frequently used
 - Additional lidocaine doses to the bronchial tree can be administered as required via the bronchoscope
 - Use of nebulized 4% lidocaine increases the risk of doubling the total dose of lidocaine, and is not recommended
 - Du Rand IA, et al. Thorax 2013;68:i1–i44. doi:10.1136/thoraxjnl-2013-203618

General anesthesia

- Administered and guided by anesthesiologist
- Indications:
 - Medical indication patients undergoing combined bronchoscopic procedure with longer durations, e.g. EBUS+BAL+TBLB
 - Allergic patients In patients who have an allergy to local anesthetics
 - Patient request for patients who do not want to have bronchoscopy using only local anesthesia + sedation
- Artificial ventilation:
 - Classical volume or pressure ventilation suitable for patients intubated using an endotracheal tube
 - High- frequency jet ventilation suitable for patients intubated using a rigid bronchoscope

General anesthesia with jet ventilation

HF Jet ventilation

- Small volumes (2 to 3 ml/kg)
- High frequency gas exchange (100-200/min)
- High pressure (100-500 kPa)
- Gas is pushed in pulsemode via a thin catheter (14-18 Gauge catheter or side-port of bronchoscope)

Bronchial and transbronchial biopsy

- To increase diagnostic yield:
 - Bronchial biopsy (BB) and transbronchial biopsy (TBLB) should be combined in sarcoidosis with transbronchial needle aspiration of lymph nodes (TBNA) and bronchoalveolar lavage (BAL)
 - TBLB should be combined with BAL in other ILDs
 - Multiple specimens should be taken during one procedure (optimally at least 5)
 - Preservation of specimens: specimens are fixed in formol making quick transport to a histopathologic lab unnecessary
 - Leonard C et al. Eur Respir J 1997
 - Shorr AF et al. Chest 2001
 - Navani N et al. Respirology 2011

Bronchial biopsy

- BB is indicated in diseases with pathological changes in airway mucosa, mainly in diseases with airway involvement, mainly sarcoidosis
- Diagnostic and differential diagnostic yield
- Technical workup: forceps biopsy of bronchial mucosa, optimally at the bronchial carinae of different lobes and segments
 - Shorr AF et al. Chest 2001

Bronchial biopsy in asthma with ABPA and sarcoidosis

Allergic bronchopulmonary aspergillosis

Sarcoidosis

Transbronchial lung biopsy - TBLB

- TBLB is indicated in diffuse lung diseases and in the diagnosis of solid (tumorous) lesions
- In general, it increases diagnostic yield of bronchoscopy by 30%
- In ILDs diagnostic yield of TBLB has been shown mainly in sarcoidosis, and to a lesser extent in hypersensitivity pneumonitis and smoking-related ILDs, dif dg versus disseminated tumors
- In its classic form TBLB is not suitable for diagnosis of most fibrosing ILDs
 - Descombes E. et al. Monaldi Arch Chest Dis 1997
 - Anders GT et al. Chest 1988

TBLB complications

- Pneumothorax
- Bleeding
- Incidence of complications: 6%; mostly pneumothorax (5.8%, 3.8% requiring intercostal drainage)

TBLB diagnostic yield in ILDs

- **Diagnosis of sarcoidosis**is up to 70% and almost 100% when combined with TBNA and BAL
- In other ILDs the diagnostic yield is low – rarely useful in hypersensitivity pneumonitis or SRIF
- Substantially increased diagnostic yield when a cryobiopsy is performed
 - Hetzel J. et al. Eur Respir J 2012

TBLB- granuloma in sarcoidosis

Transbronchial cryobiopsy - TBLC

• Transbronchial cryobiopsy: a new tool for lung biopsies.

Babiak A et al. Respiration 2009

 Method: flexible cryoprobe connected to source of CO2 temperature at the tip of probe –75 °C- duration of cooling 5 -6s, fluoroscopic control

Diagnostic yield from TBLC

Casoni et al. Plos One 2013

Transbronchial needle aspiration – TBNA - EBUS

- **TBNA EBUS** mainly valuable in diagnosis of sarcoidosis
- Combination of BAL, TBLB (TBLC) and TBNA-EBUS increases probability of obtaining a diagnosis to ≈ 100%
- Differential diagnosis of tumorous involvement of mediastinal lymph nodes
- TBNA is suitable not only for cytologic evaluation but also for histologic - part of tissue or cytoblock
- Preservation of samples saline is best, plus quick transport for further histopathologic processing
 - Navani N et al. Respirology 2011

EBUS- TBNA cytoblock and slices from cylinder of tissue retained in needle

EBUS-TBNA-low magnification

EBUS-TBNA-cartilage

EBUS-TBNA SCLC

EBUS- TBNA SCLC CD20 EMA

EBUS-TBNA sarcoid granuloma

EBUS-TBNA normal lymph node

Conclusions

- Bronchoscopy has a substantial role in the diagnosis and differential diagnosis of ILDs
- Better diagnostic yield is obtained by combining the methods; i.e. BAL, TBLB, TBLC, EBUS-TBNA
- The samples obtained are suitable for cytologic and in most cases for histopathologic evaluation (preserved as native or fixed in formol)
- Combining bronchoscopic methods and introduction of new ones (TBLC) allows patients to avoid surgical lung biopsies

Thank you for your kind attention

