Hypersensitivity Pneumonitis: Epidemiology and Classification

Ulrich Costabel, MD University of Duisburg-Essen, Ruhrlandklinik Department of Pneumology/Allergy

Definitions, Etiology
 Epidemiology
 Classification

Hypersensitivity Pneumonitis (Extrinsic Allergic Alveolitis)

- Complex Syndrome rather than a single welldefined disease
 - Response to agricultural dusts, feathers, microorganisms, chemicals, and Unknown
 - Variable clinical presentation
 - Variable natural history

Types of HP and antigens (incomplete)

Farmer's lung

Bird-keeper's lung pigeon breeder's budgerigars

Mushroom-worker's lung Humidifier lung Malt-worker's lung Cheese-washer's lung Wood-worker's lung Hot-tub lung T. vulgaris, Saccharospora rectivirgula, Aspergillus spp.

Proteins in avian droppings, in serum, and on feathers

see farmer's lung various moulds and bacteria Aspergillus spp. Penicillium casei Alternaria spp. Mycobacterium avium complex

Disease

Fungal and bacterial

Farmer's lung Ventilation pneumonitis; humidifier lung; air conditioner lung

Bagassosis Mushroom worker's lung Suberosis

Detergent lung; washing powder lung Malt worker's lung Sequoiosis

Maple bark stripper's lung Cheese washer's lung Woodworker's lung

Paprika slicer's lung Sauna taker's lung Familial HP Wood trimmer's lung Desemble of the slower HP Hot tub lung Wine maker's lung Woodsman's disease Thatched roof lung Tobacco grower's lung Potato riddler's lung

Summer-type pneumonitis Dry rot lung Stipatosis Machine operator's lung Amebae Humidifier lung

Animal proteins Pigeon breeder's or pigeon fancier's disease

Pituitary snuff taker's lung Fish meal worker's lung Bat lung Furrier's lung Animal handler's lung; laboratory worker's lung

Insect proteins Miller's lung Lycoperdonosis

Faeni rectivirrula Thermoactinomyces vulgaris, Thermoactinomyces sacchari, Thermoactinomyces candidus Klebsiella oxytoca T. vulgaris T. sacchari Thermoactinomyces viridis Penicillium glabrum Bacillus subtilis enzymes Aspergillus fumigatus, Aspergillus clavatus Graphium, Pullularia, and Trichoderma spp. Aureobasidium pullulans Cryptostroma corticale Penicillium casei, A. clavatus Alternaria spp., wood dust Mucor stolonifer Aureobasidium spp., other sources B. subtilis Rhizopus spp., Mucor spp. T. vulgaris, Aspergillus Epicoceum nigrum Cladosporium spp. Botrytis cincrea Penicillium spp. Saceboromonospora viridis Aspergillus spp.

Antigen

Saceboromonospora viridis Aspergillus spp. Thermophilic actinomycetes, E rectivirgula, T. vulgaris, Aspergillus spp. Trichosporon cutaneum Merulius lacrymans Aspergillus fumigatus; T. actinomycetes Pseudomona fluorescen, mycobacterium spp.??

Naegleria gruberi, Acanthamoeba polyphaga, Acanthamoeba castellani

Avian droppings, feathers, serum Pituitary snuff

Fish meal Bat serum protein Animal fur dust Rats, gerbils

Sitophilus granarius (ie, wheat weevil) Puffball spores

Source

Moldy hay, grain, silage Contaminated forced-air systems; water reservoirs

Moldy sugarcane (ie, bagasse) Moldy mushroom compost Moldy cork

Detergents (during processing or use) Moldy barley Moldy wood dust

Tap water lung

Tea grower's lung

Mollusk shell HP

Swimming pool worker's lung

Moldy maple bark Moldy cheese Oak, cedar, and mahogany dust, pine and spruce pulp Moldy paprika pods Contaminated sauna water Contaminated wood dust in walls Contaminated wood trimmings Compost Mold on unventilated shower Hot tub mists; mold on ceiling Mold on grapes Oak and maple trees Dead grasses and leaves Tobacco plants Moldy hay around potatoes

Contaminated old houses Rotten wood Esparto dust Aerosolized metalworking fluid

Contaminated water

Parakeets, budgerigars, pigeons, chickens, turkeys Bovine and porcine pituitary proteins Fish meal dust Bat droppings Animal pelts Urine, serum, pelts, proteins

icat weevil) Dus Lyco

Dust-contaminated grain Lycoperdon puffballs

Disease Antigen Source Chemical Pauli's reagent alveolitis Sodium diazobenzene sulfate Laboratory reagent Chemical worker's lung Isocyanates; trimellitic anhydride Polyurethane foams, spray paints, elastomers, special glues Vineyard sprayer's lung Copper sulfate Bordeaux mixture Pyrethrum HP Pvrethrum Pesticide Phthalic anhydride Epoxy resin lung Heated epoxy resin Unknown Bible printer's lung Moldy typesetting water Coptic lung (mummy handler's lung) Cloth wrappings of mummies Grain measurer's lung Cereal grain Coffee bean dust Coffee worker's lung

Contaminated tap water

Aerosolized endotoxin from pool

water sprays and fountains

Tea plants

Sea snail shell

Fungal & Bacterial
Animal Proteins
Insect Proteins
Chemical
Unknown

Selman in Schwarz & King 4th ed

Newer Entities

 Metalworking-fluid-associated HP Bernstein D, 1995; Tillie-Leblond I, 2011

Hot tub lung Kahana LM, 1997; Hanak V, 2006

Swimming pool alveolitis Koschel D, 2006

 Misting fountain alveolitis Koschel D, 2003, Müller-Wening D, 2006

Misting Fountain Alveolitis. Müller-Wening et al. 2005

Rare environments and causative agents

- Feather duvet lung (Koschel D et al, Int Arch Allergy Immunol 2010)
- Chacinero's lung- HP due to dry sausage dust [Penicillium frequentans and other moulds] (Morell F et al, Scand J Work Environ Health 2010)
- Saxophone player's lung [fungi] (Metzger F et al, Chest 2010)
- Cheiropodist's lung

[fungi in foot skin and nails] (Lingenfelser et al, Allergologie 2010)

Epidemiology

- Geographic variations
 - budgerigar (parakeet) in Europe
 - pigeon breeder's in Mexico
 - summer-type HP in Japan
- Different climate, local customs, local working conditions
- Farmer's lung more prevalent in cold and wet regions; silage making has reduced the incidence

Prevalence estimates

• Farmer's lung 1 to 19% of exposed farmers

(Gruchow 1981; Terho 1987; Depierre 1988)

 Pigeon breeder's lung 6 to 20% of exposed (Rodriguez 1993)

 Budgerigar's lung 0.5 to 7.5% of exposed, which is 10 to 12% of the UK population

(Hendrik 1978)

Smoking

- Protective against the development of HP
- Nonsmokers have higher levels of serum precipitins than smokers
- Cigarette smoking suppresses lymphocyte and macrophage function
- Smoking may inhibit the alveolar macrophage function to take up, process and present the inhaled antigen to lymphocytes

Clinical Features in 85 Patients with Hypersensitivity Pneumonia

TABLE 1. Demographic Data and Clinical Presentation		TABLE 2. Pulmonary Function Test Results at Presentation	
Characteristic	No. (%) of patients (N=85)	Type of abnormality	No. (%) of patients (n=83)*
Women Mean ± SD age (y) Smoking history Never Previous Current Median duration of symptoms (mo) (interquartile range) Symptoms Dyspnea Cough Flulike symptoms Chest discomfort	53 (62) 53±14 49 (58) 34 (40) 2 (2) 14 (5-43) 79 (93) 55 (65) 28 (33) 20 (24)	Obstruction Mild Moderate Severe Restriction Mild Moderate Severe Nonspecific abnormality Isolated reduction in diffusing capacity Normal	13 (16) 4 5 4 44 (53) 23 10 11 10 (12) 8 (10) 8 (10)
Signs Crackles Wheezes Inspiratory squeaks Digital clubbing	48 (56) 11 (13) 8 (9) 4 (5)	Hanak et al. 2007 Mayo Clin	e Proc 82:812-6

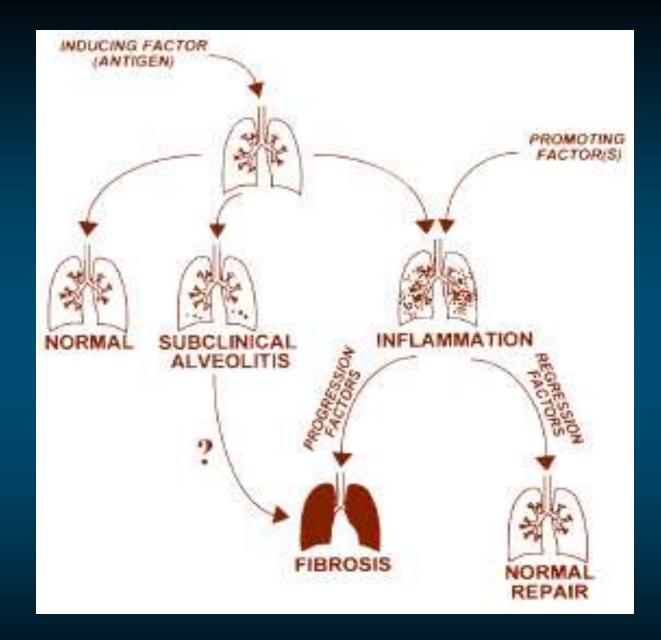
Hypersensitivity pneumonitis: clinical classification

Subacute/Intermittent
Chronic/Progressive

Richerson, et al. 1989

Clinical forms of HP

Acute HP


- intermittent high-level exposure
- symptoms occur 4 to12 hours
- flu-like symptoms and respiratory symptoms

Subacute HP

 acute episodes with fever superimposed on a background of exertional dyspnea, fatigue and cough

Chronic HP

- continuous low-level exposure
- insidious onset
- dyspnea on exertion, dry cough, weight loss, malaise

Selman in Schwarz & King 4th ed

Clinical diagnosis of HP (1) Lacasse et al, 2003

Patients with ILD from 7 centers

Derivation cohort: 400 (116 with HP)

Validation cohort: 261 (83 with HP)

Clinical diagnosis of HP (2) Lacasse et al, 2003

Logistic regression model identified 6 significant predictors of HP

Exposure to known antigen

Positive precipitating antibody

Recurrent episodes of symptoms

Inspiratory crackles

Symptoms 4 to 8 h after exposure

Weight loss

If all 6 are present, probability of having HP is 98%!

Classification of HPa hypothesis generated by cluster analysis

• Cluster 1 (41 patients):

recurrent systemic symptoms (chills, body aches), a few hours following antigen exposure; X ray normal in 30%

 Cluster 2 (127 patients): advanced ILD, inspir. crackles, clubbing one third, restriction, fibrotic changes on HRCT

Internal validation: only 3.6% misclassification rate

Lacasse et al 2009

Histopathology of HP

Partly depends on acute, subacute or chronic nature

Interstitial inflammatory infiltrate
 (cellular interstitial pneumonitis = NSIP)

Cellular bronchiolitis

Granulomatous inflammation

⇒ This histologic triad is seen in no more than 75% of cases.

 cellular chronic interstitial pneumonia ("NSIP-like") L' CARRY C

3. 10.000

cellular bronchiolitis

0.00

1. 19 19 19

non-necrotizing granulomatous inflammation

a partition

Histopathological classification of HP

Chronic bird fancier's lung: histopathological and clinical correlation. An application of the 2002 ATS/ERS consensus classification of the idiopathic interstitial pneumonias

Y Ohtani, S Saiki, M Kitaichi, Y Usui, N Inase, U Costabel, Y Yoshizawa Thorax 2005;60:665-671

Diagnostic criteria for chronic bird fancier's lung- *Thorax 2005;60:665-671*

- A history of avian contact
- Antibodies and /or lymphocyte proliferation to avian antigens
- Reproduction of symptoms of HP by an environmental provocation or laboratory controlled inhalation of avian antigens, either
- Evidence of pulmonary fibrosis with or without granulomas on histopathological analysis, or honeycombing on CT scans
- Progressive deterioration of a restrictive impairment on pulmonary function over 1 year, and
- Respiratory symptoms related to HP of >6 months

Clinical features of the patients - Thorax 2005;60:665-671

Chronic bird fancier's lung was clinically divided into two subgroups:

• Recurrent: 10 patients

reproduction of symptoms by environmental provocation at the beginning of the disease process

Insidious: 16 patients

a positive result following a laboratory controled inhalation provocation test but not following environmental exposure

Clinical features of the patients (cont.) - Thorax 2005;60:665-671

Before the first visit to the hospital, 11/26 patients with chronic bird fancier's lung had been diagnosed as having IPF, and 1/26 as having idiopathic NSIP.

Histopathological characteristics of surgical lung biopsy specimens in chronic bird fancier's lung *Thorax 2005;60:665-671*

	Group A: BOOP-like or cellular NSIP-like lesions	Group B: fibrotic NSIP- like lesions	Group C: UIP-like lesions
n	7	8	11
Cellular bronchiolitis, %	100	50	27
Honeycombing,%	0	75	91
Fibroblastic foci, %	0	75	100
Lymphoid follicles, %	100	63	64

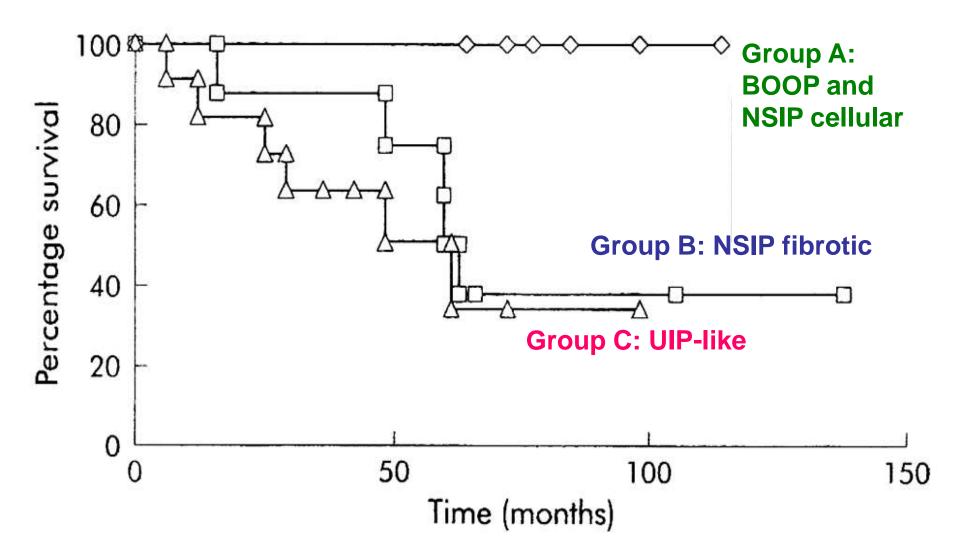
Histopathological characteristics of surgical lung biopsy specimens in chronic bird fancier's lung *Thorax 2005;60:665-671*

	Group A: BOOP-like or cellular NSIP-like lesions	Group B: fibrotic NSIP-like lesions	Group C: UIP-like lesions
n	7	8	11
Interstitial infiltrates of chronic inflammatory cells, %	100	88	100
Intraalveolar foamy histiocytes, %	29	25	36
Cholesterol clefts, %	57	38	46
Multinucleated giant cells, %	71	75	73
Granulomas, %	43	25	0

Clinical characteristics and histological pattern in chronic bird fancier's lung – *Thorax 2005;60:665-671*

	Group A: BOOP-like or cellular NSIP-like lesions	Group B: fibrotic NSIP- like lesions	Group C: UIP-like lesions
n	7	8	11
Age, yrs	57	58	65
Cases of recurrent acute episode, %	86	50	0
Exertional dyspnoea, %	86	100	91
Duration of symptoms before surgical lung biopsy, months	19	46	24
Exposure periods, yrs	12	18	11
Finger clubbing, %	0	50	82

Lab and PFT characteristics and histological pattern in chronic bird fancier's lung Thorax 2005;60:665-671


	Group A: BOOP-like or cellular NSIP-like lesions	Group B: fibrotic NSIP- like lesions	Group C: UIP-like lesions
n	7	8	11
Anti-PDE or BDE antibodies, %	86	63	18
Antigen induced lymphocyte proliferation, %	100	88	91
VC, % pred	80	61	75
TLco, % pred	59	49	52

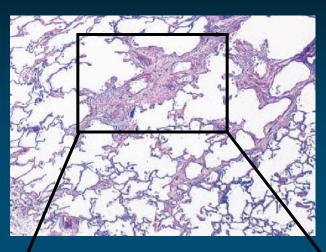
HRCT and BAL characteristics and histological pattern in chronic bird fancier's lung Thorax 2005;60:665-671

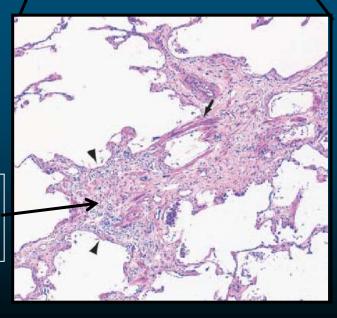
	Group A: BOOP-like or cellular NSIP- like lesions	Group B: fibrotic NSIP- like lesions	Group C: UIP-like lesions
Micronodules on HRCT, %	57	25	0
Traction bronchiectasis on HRCT, %	29	100	100
Honeycombing on HRCT, %	0	50	91
BAL lymphocytes, %	77	41	19

Prognosis and histological pattern in patients with chronic bird fancier's lung – Thorax 2005;60:665-671

	Group A: BOOP-like or cellular NSIP- like lesions	Group B: fibrotic NSIP- like lesions	Group C: UIP-like lesions
Favourable response to treatment, %	7/7	1/7	1/9
No response to treatment, %	0/7	5/7	6/9
Alive/dead	7/0	4/4	5/6

Ohtani, Saiki, Kitaichi, et al,2005

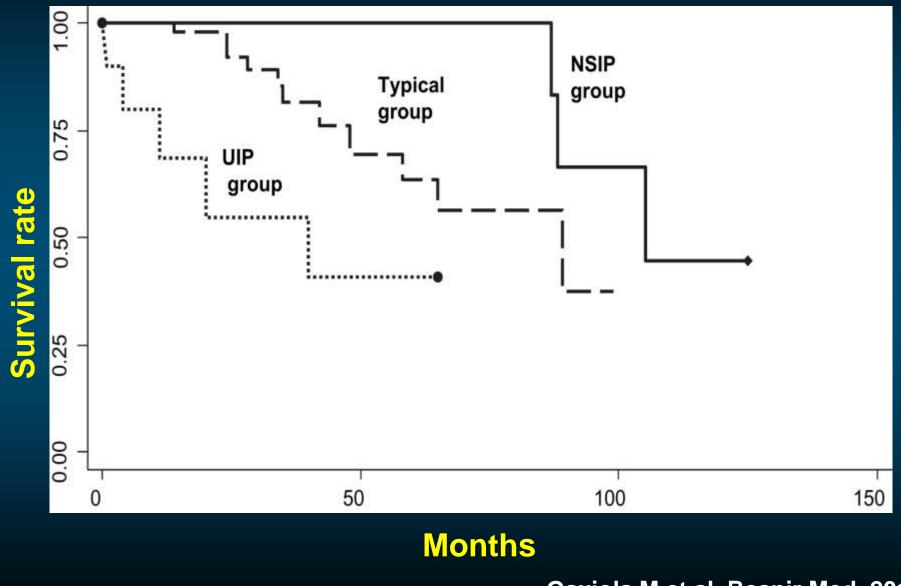

Chronic bird fancier's lung: histopathological and clinical correlation


- BOOP \bullet
- 2 recurrent episodes,
 5 good outcome NSIP, cellular •
- 8 NSIP, fibrotic insidious onset, 11 unfavorable outcome **UIP-like** •
 - Total n = 26

Histopathologic findings in IPF vs chronic HP

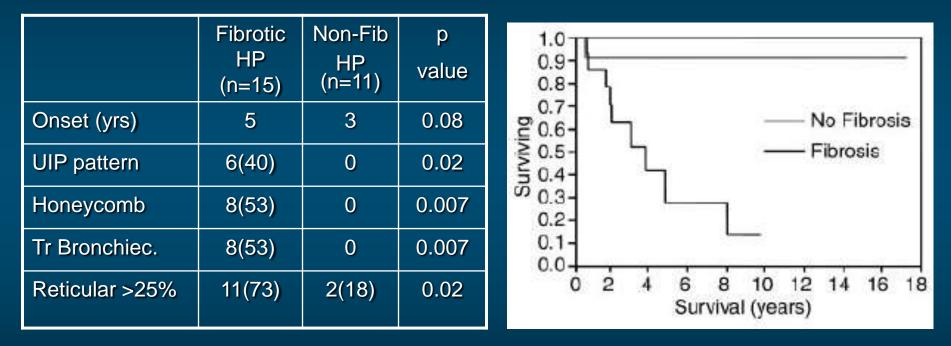
- Autopsy findings in 16 well defined CHP and 11 IPF
 - Honeycomb change in all
 - Granulomas in none
 - Macroscopic changes more common in upper lobes of CHP (44%) than IPF (0%)
 - Centrilobular fibrotic
 lesions more common in
 CHP

"Bridging fibrosis"


Akashi et al. Am J Clin Pathol 2009; 131: 405-15

Histological pattern in chronic pigeon breeder's disease: correlation with clinical data

	Typical pattern <i>n</i> = 58	NSIP pattern <i>n</i> = 22	UIP-like pattern <i>n</i> = 10	р
Finger clubbing	30/56 (53)	10/21 (47.6)	8/10 (80)	0.26
BAL lymphocytes %	65 ± 21	52 ± 23	36 ± 23	0.0011
BAL macrophages %	34 ± 20	45 ± 23	59 ± 18	0.0028
BAL eosinophils %	1 (0–9)	0 (0–13)	2 (0–13)	0.11
BAL neutrophils %	0 (0–10)	1 (0–10)	1 (0–4)	0.61
HRCT				
Inflammation (%)	30/40 (75)	11/16 (69)	1/7 (14)	<0.007
Fibrosis (%)	10/40 (25)	5/16 (31)	6/7 (86)	<0.007


Gaxiola M et al, Respir Med 2011

Survival rate according to histological pattern

Gaxiola M et al, Respir Med 2011

HRCT Features in Relation to Fibrosis on Biopsy

No difference in GGO, Centrilobular nodules, emphysema, Mosaic attenutaion

Sahin et al. 2007 Radiology 244:591-8

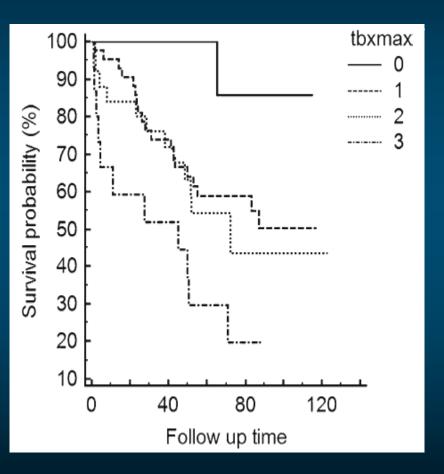
Chronic hypersensitivity pneumonitis: high resolution computed tomography patterns and pulmonary function indices as prognostic determinants

Simon L. F. Walsh • Nicola Sverzellati • Anand Devaraj • Athol U. Wells • David M. Hansell

Eur Radiol (2012) 22:1672-1679

Chronic HP: HRCT patterns predict mortality

Chronic HP n=92 PFT, HRCT Score Correlate with survival



Walsh et al, Eur Radiol 2012

HRCT patterns and mortality in HP

Variable	Hazards ratio	P value	95% CI
Total interstitial disease extent	1.02	0.02	1.00-1.03
Microcystic honeycombing	1.09	0.019	1.01-1.17
Macrocystic honeycombing	1.06	< 0.01	1.01-1.10
Traction bronchiectasis	<mark>1.10</mark>	< 0.001	1.04-1.16

Each patient was assigned a maximum traction bronchiectasis score (Tbxmax) ranging from 0–3.

Walsh et al, Eur Radiol 2012

Conclusions from this study

 Superiority of HRCT patterns over pulmonary function for determining prognosis in chronic HP

 Increasing severity of traction bronchiectasis is the strongest determinant of mortality

Walsh et al, Eur Radiol 2012

Classification According to Disease Behavior

Clinical Behavior	Treatment Goal	Monitoring Strategy
Reversible and self-limited (e.g. acute HP, many cases of RB-ILD)	Remove possible cause	Short-term (3-6 month) observation to confirm disease regression
Reversible disease with risk of progression (e.g. subacute HP, cellular NSIP and some fibrotic NSIP, COP)	Initially for a response & then rationalize longer term therapy	Short-term observation to confirm treatment response. Long term observation to ensure that gains are preserved
Stable with residual disease (e.g. inactive HP with some fibrotic residuals)	Maintain status	Long-term observation to assess disease course
Progressive, irreversible disease with potential for stabilization (e.g. some chronic HP, some fibrotic NSIP)	To stabilize	Long-term observation to assess disease course
Progressive, irreversible disease despite therapy (e.g. IPF, some chronic HP, some fibrotic NSIP)	To slow progression	Long-term observation to assess disease course and need for transplant or effective palliation

ATS/ERS Update of Classification of IIPs 2013

Summary

 HP is a complex syndrome rather than a single disease

- Aetiological classification
- Clinical classification
- Histopathological classification
- HRCT classification
- Disease behavior classification

Thank you for your attention

